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In connection with the fact that failure of a structure ordinarily starts at sites of 

the most acute stress concentrations near cavitiies. it is of interest to determine 

the shape of the equally strong outlines of holes on which the technologically 
inevitable stress aoncentration would be least as compared with all other outlines. 

An effective exact solution of some inverse plane problems of the theory of 
elasticity concerning the determination of equally strong outlines of holes is PO- 
posed. A formulation of the problem is given first and the fundamental relation- 

ships are presented. Then the general problem for any number of holes in an in- 

finite plane is reduced to a standard Dirichlet problem for the exterior of the 
same number of parallel slits on a parametric plane. An effective exact solution 

is found by this method for the case of one and two holes as well as for the case 

of periodic and doubly-periodic series of holes. The question of application of 

the solutions obtained to the theory of a minimum weight structure is considered. 

1. Formulation of the problem and fundrmrntrl relrtionrhipl. 
Let us examine the state of stress in an infinite isotropic and homogeneous elastic plate 
weakened by curvilinear holes, whose number can be arbitrary. Let us assume that con- 
stant normal and tangential stress resultants 

(5, =p, T,t = ‘G (1.1) 

are applied to rhe edges of the hole while a homogeneous field of constant stresses acts 
at infinity (in the case of a doubly-periodic series of holes the conditions replacing (1.2) 
are presented below in Sect. 5) 

6, = a,-, q/ = by*, z,u = z 65 

(1.2) 

Here 2, y are rectangular Cartesian coordinates, t and n are the tangent and normal 
to the hole outline (generating a right-hand system nt). 

Let us pose the following problem : find the shape of holes and their mutual disposition 
such that the tangential normal stress o* acting on these outlines would be a constant, iden. 
tical for all the holes. Let us therefore require compliance with the following condition 
on all the hole outlines: 

o’t = o = const (1.3) 

Such holes are called equally strong [ 11. As the holes themselves, the quantity o is to 
be determined. A plastic zone evidently originates simultaneously over the whole out- 
line on the equally strong holes. 

The formulation and solution of some problems of this kind exists in [l-11]. The close 
connection between, these problems and theories of a minimum weight structure is dis- 
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cussed below in Sect. 6, 

Let us represent the stress ~rn~nen~ [ 121 in terms of the Kolos~-~~helishvili 
potentials (I> (z) and Y (z) 

a,+q, =4Re@(z) (2 = r f iy) (1.4) 
%I - =, + WQl = 2 [RD’ (2) + Yp (z)] 

Acceding to (I.. 2), as z tends to infinity the functions @ (2) and Y (z) behave thus 

@ (z) = l/d @zoo + &=) -t- 0 (z-“) (1*5) 

Y (2) = b + 0 (P), b = 1/2 (a,” - ax”) + iz” 

The case of an infinitely-connected domain is singular and should be considered sepa- 
rately. 

Using the relatio~hi~ 

Gt + % = @x + @y ~~.~) 

ot - CI, + 2i7tn = e2ia (CT, - ax ““j- 2iT~J 

where a is the angle between the external normal to the outline and the z-axis meas- 
ured from 2 to n,as well as the representations (1,4), then the boundary conditions 
(1.1) and (1.2) on the unknown outlines .&, of the holes can be represented as 

4Rea,(z)==cs+p, ZEI;O (1.7) 

ZQ’ (2) f Y? (2) = ae-2ia, 2 E LO (a = 1/2 (Q - p) + iz) (1.8) 

If an analytic function is bounded everywhere within a domain (including at the infi- 

nitely remote point). and its real part is constant on the domain boundary, then the func- 
tion itself is constant, Therefore, the solution of the boundary value problem (1.7). (1.5) 

for the function CD (z) has the form 

CD (z) = l/r@ + P>, 6 = 5,== + gum - p 

Taking account of (1.9). the boundary condition (1.8) is written as 

esaY (a) = a, z E Lo 

where Y (z) I- b + 0 (T2) as z -+ 00. 

2. Method of eolring thr boundrry vrluo problem, Let us goover 
to the parameteric plane of the complex variable 5 by using conformal mapping per- 

formed by the analytic function o ( 5) 

s = MC> 
(2.1) 

Let us recall the fundamental facts [13] from the theory of eonformal mapping of 
multiconnected domains : (a) every n-connected domain, including the infinitely remote 

point, can always be mapped conformally on the exterior of some 11 slits parallel to the 
real axis with the infinitely remote points coincident, (b) for n > 3 this mapping is 

unique if the behavior of the mapping function at infinity w (f;) = 5 + 0 (1) as 5 -i) CQ 

is specified, 
Let us consider the desired function CO (5) to give a mutually one-to-one correspond- 

ence between the elastic domain on the z plane and the exterior of the corresponding 

number of slits M on the g plane, which are parallel to the real axis (see Fig. 1, where 
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the case of a doubly-connected domain is shown). 
We determine e*ia. We give an increment to the point z in the normal direction to 

the outline Lo 

o!!!iis? 

dz = eia 1 dz 1 (2.2) 

By virtue of the conformality of the mapping.the 
corresponding point on the 5 plane will move along 

the normal to the slit, i.e. to the real axis 

X 
dc =+ iId (2.3) 

ot 
L tUZZU&M Using (2,2) and (2.3) we find 

Therefore 
e2ia = - 0’ (5) /ol (2.4) 

By using (2.4) the boundary value problem ( 1.11) is now written thus : 

- 9(C) 0’ (5) = ~Jmo1 <EM (2.5) 
Here 

$ ( %) = y 1 0 ( 01 
The functions q (5 ) and 0 (5 > are to be determined from the boundary value problem 
(2.5). Let us take the real and imaginary parts in the expression (2.5), whereupon we 

obtain 
Re F'(C) = 0, 5E ltif (2.6) 

Here 
Iin G’ (5) = 0, 6EM (2.7) 

F’(5) =$((5)@‘(C) +do’(c), G'(c) ==$(C)W'(~) -g@'(5) (2.8) 

The functions F’ ( 5) and G’ (5) are analytic everywhere in the exterior of the slits 

M. They are bounded in the neighborhood of the infinitely remote point since the func- 

tions $ ( 5) and 0’ ( 5) are bounded as 5 + 00. 

The behavior of the functions F’ (5) and G’ (5) at the ends of the slits M is deter- 
mined by the requirements imposed on the desired hole outlines L,,. Let us require that 

all the contours L,, be smooth, i.e. should not contain cusps and corners. Under this 
additional condition the function $ (5) is bounded everywhere in the neighborhood of 

points of the slits M, but the function o’ &) is bounded everywhere with the exception 

of the ends of the slits m in whose neighborhoods o’ (5) evidently have a power singu- 
larity of order l&. In conformity with this condition, on the basis of (2.8). the analytic 
functions F’ (c) and G’ (5) are bounded in the whole j plane with the exception ofthe 
ends of the slfrs M at which they have a power-law singularity of order l/*. For exam- 
ple, if the point cLQ1 is an endpoint of one of the slits M. then 

P (5) = G(Vz&)y G’(5) = O(,,,+&-) for C--CM (2.9) 

The boundary value problems (2.6) and (2.7) are classical Dirichlet problems for the 
exterior of slits, where the solution of the problems is sought in the class of functions 

bounded at infinity and having a singularity of the form (2.9) at the ends of the slits. 
Namely, the hydrodynamic problem of the flow over the cascade of profiles by a poten- 
tial ideal incompressible weightless fluid stream results in such a mathematical problem 
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f143. A complex velocity potential of the fluid stream hence corresponds to the func- 
tions F and G , 

Therefore, the boundary value problem (2.6) or (2.7) is completely analogous, in ma - 

thematical respects, to the following hydrodynamic problem : a potential, circulation - 

free, ideal incompressible fluid stream flows over a system of M zero-thickness flat 
profiles in the 5 plane (the stream velocity is bounded at infinity); find the complex 

flow potential. 

After the functions F (5) and C (5) have been found, the desired functions I@ ($1 and 
o @are determined by using (2.8) according to the following formulas: 

F’ (9 + C’ iI;) 
* (5) = ’ F’ (5) _ G’ (~1 (2.11) 

where (C, is an arbitrary constant, 

Let us clarify yet another condition which results from the physical requirement of no 

dislocations upon traversing the outline of each hole. The following condition which 
the function o (5) should satisfy 

$0’ (5) * (5) 4 = 0 (2.12) 

is hence obtained easily from the expression for the complex displacement vector [12] 

and (I, 9). The contour integral is here taken around the contour enclosing one of the 
slits M. The number of conditions (2,121 equals the number of slits. reforming the 

contour of integration at the upper and lower edges of the appropriate slit, and using 

(2.5), we hence obtain 

$ 
lo’d{==O (2,131 

Since the slits M are parallel to the imaginary axis, then & = dx, therefore, condition 
(2.13) means that the function o (5) should be unique upon traversing any of the slits 
M. However, this condition is already contained in the conformal mapping requirements 

realized by the fnnction o (5). Hence, the requirement of no-dislocations in a multi- 

connected elastic domain results in this case from the required condition of uniqueness 
of the function o (5). 

According to (1.4), (L 9)* (1. lo), (2.5) and (2.8). the field of elastic stresses is found 
from the following ~lations~i~ : 

Hence, the approach developed permits finding the effective solution of inverse prob- 
lems of the plane theory of elasticity for any number and for any arrangement of holes. 

8. One or two holac. A doubly- and triply -connected domain can always be 

mapped conformally on the exterior of a eorreponding number of slits along the real 

axis [15-j. 
One hole. In the case of one hole, there will be one slit on the plane which can 

be considered the slit (- 1, + 1) along the real axis without loss of generality. 
For c-+oQ wehave O(C) ===C,c +- 0 ( 5-r). The quantity c1 can be oonsidered 

real. According to the Riemann theorem, this condition together with assignment Of the 
sift length exhausts the possible arbitrariness in the description of the conformal trans- 
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formation of the two given domains, 
According to (2.8), we have 

for 5 -+ 0Q 

919 

F’ (E) = (b + a)c, + 0 (c-), G’ (5) = (b - ah + 0 (t--“) (3.1) 
The solution of the boundary value problems (2.6) and (2.7) for the exterior of the slit 
mentioned is the following under conditions (2.9) and (3.1) [ 141: 

F’ (5) = icl Im (b + a) + “’ ‘;>g+ cl1 (3.2) 

G’ (5) == Cl ne (b _ a) + ‘Cl5 Ill;(;z;‘; + idz 

Here we have f 5” - 1 = 5 + 0 ( 5-l) as c + OQ . The real constants dl and d, 
are arbitrary. Integrating (3.2) we find 

F (5) = ic,c Im (b + fi) -j- cl .1/c” - 1 Re (b + a) f dl In (I;+1/5”-) (30 3) 

G (5) = cl5 Re.(b - ci) + ic, 1/c” - 1 Im (b - a) +i& h (5 i- f/ga) 

Hence, setting co = 0 we obtain by using (2.10) 

o(5)=~(mlj+m,1/52-_+~ln(5+1/52-1) (3.4) 

(m,=l-b/Z, m2=1+Z/C) 

The function o (5) should be unique in the exterior of the slit (-I, + 1). According to 
the solution (3.4), this condition is satisfied only if d, = d, = 0, which is henceforth 
assumed. 

The equation of the hole outline in parameteric form is obtained from (3.4) for 
d, = d, = 0 

25 1/Z cl (E Re ml T VI - E” 1 m me> 
(3.5) 

y = l/2 cl(E Imm,+~l -k2Rem,) (-l<E<l) 

or in Complex form 
2 = ‘12 cl (ml5 t_ im, 1/l - g2) (3.6) 

where E is a real parameter less than unity (the upper sign in (3.5) corresponds to the 
upper edge of the slit, and the lower sign to the lower edge). Eliminating the parameter 

E, in (3.5), we arrive at a second order curve, an ellipse, since on the basis of (3.6) finite 
values of the complex vector of the curve correspond to any values of the parameter E 
less than unity in absolutevalue. 

let us find the fundamental parameters of this ellipse, which is the desired hole outline. 

The foci of the ellipse are branch points on the two-sheeted Riemann surface of the func- 
tion 6 = 5 (z), the inverse of the function (3.4). We hence find the complex vectorsof 
the foci 

zF = + ll~cl V/m? - n$ (3.7) 

The center of the ellipse (the middle of the segment connecting the foci) coincides with 

the origin. The angle the major axis of the ellipse encloses with the abscissa axis is 

aF = Vz arg (ml2 - m2Y (3.8) 
According to (3.6), the point Z, = l/zcl% lies on the ellipse, According to the focal 
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property of the ellipse, the sum of the distances from this point to the foci equals the 
major diameter of the ellipse 2a,, i. e. 

al = l/&i (I V/ml2 - ms2 + ml 1 + 1 ml - 1/rn12 - m2 I) (3.9) 

The minor semi-axis of the ellipse equals dar2 - I zF 12. 

Therefore, the outlines of the desired hole are a family of similar ellipses (since cr is 
an arbitrary real parameter), whose orientation and fundamental parameters are given 

by (3.7)-(3.9). In the case P = z = 0, when the quantities m, and ms are real, the 
result corresponds to that obtained earlier in [l] by another method. 

Two holes. let us map the exterior of two holes conformally onto the exterior of 
two slits (Al, As) and (ha, hp) along the real axis of the 5 plane with the infinitely 
remote points coincident. Without limiting the generality, the coefficient ci can be con- 
sidered real and positive in the conditions (3.1) at infinity. The solution of the Dirichlet 

problem (2.6) and (2.7) for the slits mentioned is. under the conditions (3.1) at infinity, 

F' (5) = icl Im (b + ti) + 4 [c1c2 Re (ii -+- 6) + c&c + d,] (3.10) 

G’ (5) = cl Re (b - ti) + -& [ iclc2 Im (b - 0) -j- id& f id,] 

R = r/K - &I)& - h2) (t - b) (5 - U 

Here d, - d4 are real arbitrary constants. and the square root in (3.10) behaves as 

5” + 0 (5) for 5 3 00. In this case the constants can be set A, = 0 and h, = 1 . 

In all. seven undetermined real constants are contained in (3.10). Four of them are de - 

termined from the two complex uniqueness conditions for the functions w ($) (see 
(2.14)). The constant cr, which gives the scale in the physical z plane, is undetermined 

by the formulation of the problem. Two constants remain which are determined by im- 
posing added requirements on the desired outlines and their mutual disposition. There- 
fore, in the general nonsymmetric case the outlines of the desired holes form a family 

dependent on two arbitrary real parameters. We omit the awkward result of integrating 

@ YJP 

in terms of elliptic functions. 
Let us consider the symmetric case when t’v = 

L0 ,&I r = 0 (Fig. 2) in more detail. In this case the 

outlines of both holes are symmetric relative to 
the abscissa and ordinate axes. For definiteness, 

let us consider one hole to be located entirely in 

the left half-plane (x < 0)) and the other to be 
symmetrically in the right half-plane (z > 0). 
In the symmetric case under consideration, we can 

(without limiting the generality) set in (3.10) 

A,= -2, h2z -1, A3 = 1, ?q =z, (3.11) 

d,=d, =c& =O, (Im a =O, Im b =O> 

This last relationship is a result of the symmetry of the problem and the condition dy / 
cl5 = 0 for 1 E 1 < 1. We consequently obtain 

F'(L) -= CQ (b + a)+ dz 
V/P- 1) (P- 4) ’ 

G’ (1;) = Cl (b -- a) (3.12) 
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We hence evaluate the function o (5) by using (2.10) (the constant ca is selected from 
the condition that 0 (0) = 0) 

o(5)=~[6(a_b)+Z(a+b)E(arcsin5, +) - (3.13) 

(U + b) (2+ +d,) P (arcsing, a)] 

Here F and E are the elliptic integrals of the first and second kinds, respectively. 
The coordinates of the point B on the outline of the right-hand hole (Fig. 2) can be 

obtained by means of (3.13) for 5 = 1 

..=~[,-,+,,,+,,E(~)-K($)(a+b)(2+~~~)] (3.14) 

It is convenient to determine the shape of the outline directly by means of (3.12) and 

(2.10); we find [16] (for z > 0 and 9 > 0) 

z=m+$cl (I-f)(M), 

y=-+cl P++)j 
c?+ d2) dS 

1 V/(42-1)(4-P) = 

$ v/(4 - E”) (E” - I)] 

( 
rp=arcsin 2VE2-1 , 

“, If3 
KW’) 

/ 

For E = 2, i. e. for ‘p = n / 2, the y coordinate of the hole outline (at the 

see Fig. 2) should equal zero. This condition serves to determine the unknown 
d,; by using the second formula in (3.15) we find 

d, = - 
4R(1/>/2) 

K(V/:‘l/.,) 
= - 2.246 

Inserting this value of d, into (3.14) and (3.15) we finally obtain 

ZB = -cl (0.23 + 1.23 h / a), z = 1%B $ ‘/2 cl (1 - h / a)(E- 1) 
y = -l/2 cl (1 + h / n)12E (cp, v-32) - l.l23F(cp, v/5/2) - 

c-’ v/(4 - ~“)(E’ - I)1 

(3.15) 

point C, 
constant 

(3.16) 

(3.17) 

Therefore, in the case of a symmetric arrangement of two equally strong holes, the solu- 
tion is determined to the accuracy of one arbitrary positive constant ci which yields the 
scale. The hole outline is defined by (3.17). 

Let us note certain constraints which the external loads should satisfy so that the solu- 
tion (3.17) would have physical meaning. According to (3.17) itself, it is necessary for 
this that the inequalities 

l)bln, I>-b/a, b/a<-0.23/1.23=-0.187 

-1 < b I a < -0.187 
must hold, where 
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b/a = (syoJ - %O”) / (%cco + Qyrn - 2p) (3.18) 

As is easy to see, this inequality results in the following conditions (a) or (b) for the ex- 

istence of the desired solution: 

(a) 62w)cy”>p, 5 m -~521">0.315(a,~-p) 
@I csxm<~~~<p, ~~~-sv"<0.3i5(a,m-p) 

Outlines of a family of equally strong holes are constructed by means of (3.15) in 

Fig. 3 for different values of b / a (for z > 0 and y > 0). 

c, 
Fig. 3 

The approximate solution of the problem considered by the small parameter method 

was attempted in p]. 

4. Periodio problem, If all the hole outlines have a common axis of symme- 
try which intersects them, then the domain of any connectedness located outside these 

holes is mapped conformally on the exterior of slits along the same line (* ). In this 

case the Dirichlet problem has a simple closed solution. 
Let us consider the periodic problem when identical holes are arranged with some 

period 2 L along the cz -axis, which is not certainly their axis of symmetry because of 
the presence of shear stresses (Fig. 4). 

Let us go over to the exterior of a periodic system of M slits along the real axis of 

the 5 plane by using the conformal mapping z = o (5) (the lattice period can be 

taken equal to x, see Fig. 4). As before, we use condition (3.1) as the condition at in- 
finity ; it should be kept in mind that the second terms in these formulas describe an 
exponential decrease at infinity in this case, and not a power-law decrease as in the case 
of a finite number of holes. In the case under consideration, the constant Cl can eviden- 

tly be considered real and positive. The solution of the boundary value problems (2.6) 

and (2.7) under the additional conditions (2.9) and (3.1) is found easily on the infinite- 
sheeted kiemann surface of the function sin 5 slit along the segment (sin el, sin ed 
of the real axis on both sheets. The function sin 5 conformally maps the exterior of 
the periodic system of M slits of the 5 plane onto the mentioned Riemann surface. 

*) The same is valid for multiconnected domains possessing cyclic symmetry. 
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The general solution of these problems is 

F’ (5) = icl Im (b + a) + +] c,sinPRe(b+ti)-j-tE,] 

G’ (t) = cl Re (b - a) + -+] icl sin Im (b - I?) + idz] 

R = V(sin 5 - sin ei) (sin 5 - sin es) 

Here ct, d,, d,, e,, ez are undetermined real constants: as sin 5 + co the root R 

in (4.1) behaves as sin 5 + 0 (sin’&). The function o (5) is determined by (2.10) 
under the additional condition w (-n f 2) = ---A to find the constant Ca {see Fig. 

4): 

@(s)=-L+& 
5 

II”‘(<) - G’ (511 d5 (4.2) 
--X/Z 

The function o(c) must satisfy two additional conditions: (a) the condition of unique- 

ness Of W (5 ) upon traversing the slit (e,, e,); (b) the condition of correspondence 

of the points C and I?‘, having the form w (n / 2) = L (see Fig. 4). These condi- 

Fig. 4 

tions are to seek four (out of the five) undeterm- 
ined coefficients in (4.1) and (4.2). Therefore, 

in the general nonsymmetric case of the periodic 
problem, the solution is determined to the accuracy 

of one arbitrary constant, i. e. equally strong out- 

lines possess a family dependent on one free para- 
meter. 

Let us consider the symmetric case when r* = 

z = 0 in more detail. In this case the outline 
of the desired hole L,, in the fundamental period 

(Fig, 4) is symmetric relative to the abscissa and 

ordinate axes, and its corresponding segment AZ 
on the 5 plane is a symmetric slit along (-e,, 

e,) of length 2e,. By virtue of the symmetry 

mentioned, we can set in (4,1) 

e, = -e,, e, = eo, d, = d, = 0 

(Ima =Imb =O) 

We therefore find 

F’ (5) = 
cl (a + b) sin f 

f’sinz 5 _ si*z e. ’ G’ (5) = Cl (b - a) (4.3) 

0 (5) I- -L + l/z Cl (1 - b / a)( 5 + II / 2) - 1/s cl (1 S 
b / a) arc sin (cos 5 / cos e,) 

(0 (-n / 2) = -L) 

(4.4) 

From the condition of correspondence of the points C and C’ in Fig. 4, i, e, 0 (n / 

2) = L , we obtain by using (4.4) 

Cl = --(ZaL) f (nb) (4‘ 5) 

Let us find the diameter 2x,, 

I; =eo 

of an equally strong hole in the y = 0 section; setting 
in (4.4), we obtain 



BY using (4.4)-(4.6) we write the equation of an equally strong outline in the following 

parametric form (for y > 0, IxI < L): 

D=f+$)~ (4.7) 

Y= -~~(~+~)l~(~~~~-~) 

k-WCE<%f 

The family of curves (4.7) depends on one positive parameter es, smaller than TI / 2. 
We find the diameter 23s of an equally strong hole in the section z = 0; setting 
E = 0 in the second formula in (4,7), we obtain 

Yo = -$L(I+$)lnf~o~i~en !4.8) 

In conformity with the physical meaning of the problem, the quantities x0 and y. must 
be positive (moreover, evidently x0 < L); hence on the basis of (4.6) and (4.8) the 
external loads must satisfy the following condition 

C0 
-I<~<------ 3s - et) (9.9) 

where b J a is given by (3,18), As is easy to see, this ineq~li~ results in the follow- 
ing conditions (a) or (b) for the existence of the desired solution: 

Fig. 5 Fig, 6 

Let us examine the limit case of one hole in an infinite plane. This case is obtained 
from the periodic solution found by the foliowing passage to the limit in (4,3)-(4.8) : 

nb 
L-ew, eo --PO, 5--o, CL = -p,c1pi5 eoL=- & “be1 (4.11) 
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where C, (specified arbitrarily) is a positive constant, and [I is a new complex varia- 
ble. In particular, the hole outline becomes an ellipse 

z = l/zCl (1 - b 1 a) t _ 
y = lJ.C, (1 $- b 1 a) VI - t2 (- 1 < t < 1) 

(4.12) 

The latter solution exists under the condition 1 b / a 1 < 1 (cf. corresponding condition 

(4.9) for the periodic problem). 
Outlines of a family of equally strong holes are constructed by means of (4.7) in Fig. 

5 for different values of e, ( e0 = 2O”, do”, 60” correspond to curves l-3) and b/a= 

-0.2 (a), -0.4 (b), -0.6(c). -0.8(d) (for L > z > 0, y > 0). 
An approximate solution of the problem considered by the small parameter method 

was attempted in [6, 111. 

5. Doubly-periodic problem, Let a system of equally-strong holes form a 

doubly-periodic rectangular lattice with period 2 (L + iH) in the z plane (see Fig. 
6, where the fundamental period is shown). For reasons of convenience in the solution, 

let us temporarily consider stresses to be given at the point t = 0, y = EI , (and the 

other corresponding points), i. e. for z -+ iH 

a, = sxm, qzJ = 6gW, z,, = Zm (5. I) 

Here oXm, oZlm, P are certain quantities. 
Let the conformal mapping z = o ( c) transform the exterior of a doubly-periodic 

system of slits in the 6 plane in the elastic domain of the z plane, with correspondence 
of three points of the fundamental periods (see Fig. 6) 

A t, A’, B cf B', D ++D' (5.2) 

The period of the rectangular lattice in the 5 plane can be considered equal to 2 + 

2hi without limiting the generality. 

The desired function o (5) is defined uniquely by the requirements mentioned (for a 
given hole outline L,). 

The exterior of the outline J!& in the fundamental period of the z plane is mapped 

onto the exterior of theslit (e,, e,) along the real axis of the 5 plane (also in the 
fundamental period, see Fig. 6). 

According to(5.1),(5.2),(1.4)and(2.8),wehave 0 (5)~ iH + cl (5 - ih)f . . . 
as C-+ih . 

$ (5) = b + 0 (5 - ih), I;' (5) = (b + a)c, + 0 (5 - ih) (5*3) 
G' (5) = (b - if)c, + 0 (5 - ih) 

Here cl is some positive quantity and the notation a and b agrees with that used earlier. 
Let the modulus k be defined by the equation 

and the quantity 
K (VI -k2) = hK (k) 

a = 1 / K (k) 

(5.4) 

(5.5) 

The elliptic sine w = sn (5 / a, k) maps the exterior of the mentioned doubly- 
periodic system of slits in the 5 plane onto the infinitely-sheeted Riemann surface w 
slit along the segment (wi, wz) of the real axis on all the sheets, where 

X L =sn(e,/a, k), up = sn (es I a, k) (5.6) 
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where the point g ‘-_ iiz corresponds to the infinitely remote point on the pPincipai 
sheet of the Riemann surface, Using the Riemann surface w and the condition (5.3), 

the general solution of the boundary value problem (2.6) and (2. ‘7) can be written thus: 

F’ (5) = iq Im (b + ti) -+- + kw Ra (b -t- 4 + 61 (5.7) 

G’ (5) = cl Re (b -n)~~[~~~~Im(b-~a)+id,] 

JLZ = V(z4J - z&f (w - %), w = sn(cfa, k) 

Here cl, 4, d,, wl, w, are undetermined real constants. As ut +- OQ the root R in 

(5.8) behaves as w j- 0 (1). The faction o ( c) is defined by means of [2,lO),where 
the constant CO is found from the condition that the points A and A’ correspond. 

Four of the above-mentioned constants are sought from the conditions that the function 

w (5) is unique as the slit (e,, eJ is traversed and from the condition that the points 

B and B’ correspond. The constant h is found from the condition that w (5) --+ iH 
as 5 --+ ih. Therefore, in the general nonsymmetric case of the periodic problem, the 

solution is determined to the accuracy of one arbitrary constant, i. e. the lattice of 

equally strong outlines forms a family dependent on one free parameter. 
Up to now the state of stress has been considered given at the point z = iH, which 

does not conform to the physical substance of the problem. We determine the additional 
conditions which are adequate to the formulation of the problem and can determine the 
constants o2*, (XVrn and 9 in the solution obtained. 

Let us consider an imaginary elastic rectangle with the sides 2mL and 2nN con- 

sisting of mn perforated rectangles E,E&:‘,E4 (m and n are integers which we shall 
consider quite large). Constant normal stresses N,, iv, and oonstant tangential loads 

N ry , N,, are applied to the sides of this rectangle. The edge effect damps out at 
aistances equal approximately to two lattice periods, and the state of stress becomes 
practically identical to that which holds in an ideal infinite lattice. 

The equilibrium conditions of all the external loads acting on the rectangle mentioned, 

result in the following conditions for rrt -+ oo and y1 -+ 00. : 

(5.6) 

Moreover, the equilibrium equation in moments 

should be satisfied, Here M; is the total moment caused by the external tangential 
loads z on the hole outline LO (I is the radius vector of the curve LO and &S is its 
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arclength vector). 
Let us consider the symmetric case, when ‘G = 0, N,. = N,, = 0, in more de- 

tail. In this case, the outline of the desired hole Lo in the fundamental period (see Fig. 
6) is symmetric relative to the z and y axes, and its corresponding outline M on the 

5 plane is a slit along (-e,, e,). Symmetry relative to the vertical and horizontal 

axes is conserved on the % plane and on the surface 20. In the case under consideration, 

we can set in (5.7) 
e, =-eo, e2 = e,, d, = a, = 0, P CO 

(Ima =Imb =O) 
We therefore obtain 

F’ (5) = 
cl (a + b) sn (5 I@, k) 

1/snz (6 / u, k) - sns (eo / u, k) 
f G’ (6) = Cl (b - a) (5.10) 

45) = -L + & 5 [F’ (5) - G’ (c)l:dp = -L + (5.11) 

--I 

Here L 

I(‘) = 1 sn(L/~ k)4 

-1 
vsna (c/u, k) -sns(eo/u, k) = 

(5.12) 

t 
U s dt 

dn(eo/u,k) v(te-@)(I-@) 

t _ dn (51 e, k) 
- dn(eo/u, k) ’ 

6 = r/i -- ka 
dn (e&z, k (6 < 1) 

The root Jf/<t” - 6s) (1 - t2) in the complex t plane is a function which is analytic 
in the exterior of the slits along the real axis (-1, -_6) and (6, 1); that branch of 
the function is taken which is positive on the upper edge of the slit (6, 1) on the real 

axis. The relationships from the theory of elliptic functions were used (for brevity, we 

omit the second argument) 

(5.13) 

By using the elliptic integral of the first kind, the integral in (5.12) can be written thus : 

I K) = dn (eoyu, k) F (am sin ‘k? , 1/i - 6”) 
t 1/l-@ 

(5.14) 

On the basis of (5.11) and (5.14), the hole diameter 2x0 in the y = 0 section of the 
z plane is easily found from the condition o (-e,) = --zO; we obtain 

x,=L- fc (~-&)+4++c1 (I+$) o(dK,~~,~) (5.15) 

From the correspondence between the points B and B’ in Fig. 6 (i. e. o (1) = L) , 
we find by using (5.11)-(5.14) 

==c, (I-$) -2C41f3 a$~~ (5.16) 
t 

From the correspondence between the points D and D’ in Fig. 6 (i. e. 0 (ih) = iH), 
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we find by using (5.11)-(5.14) 

for 6 -+ ih, t -+ co 
1 

Is a ’ 4 
dt 

dn (e0 I u, k) pqts - @),(I -- te) + 1 1’(tP-&l-ty - .I ?zz (5.17) 
3 

The equation of an equally strong outline L, in the f~damental period (for --I; ( 

5 < 0, y > 0) can be written in the following parametric form on the basis of (5.11) 

and (5.12): 
x + iy == - x0 + > -;1-G, (i-$)(kti’,)+ 

i.e., l161 

iuq (1 f b/ a) dt 
2dn (eo I a, k) JI it%--. 62) (t2 - I) 

i 

t _ dn (4 lx k) / 
- dn (eo / a, k) .-3 1/ 

1 - /G SIG (< / a, k) 

1 - ka sn2(ee0/ a,k) 

3 = - 3-g Ji- lizcr (1 -- h / a) (t c 4 

There remains to determine the constants ci”, and 0:. To do this, it is sufficient to 

use just the first two equilibrium equations (5.9) in this case, which can be written by 

using (2.15) thus : --e 

s 
6, ds = (cbm + 51,=) (L - x0) 4- 

s 
” [P’ (5) + G’ (?J] d5 = 2LN, (5. r9) 

EJL -1 

-t+ih 
. 

\ ?x d# = N (a,- .-j- au=) i_ i IF” (5) i- G’ (01 d5 = 2HN% 
w. 

\ 

E&E, --1 

Using the solution of the problem in the form (5.10) - (&12), let us evaluate the integ- 

rals in (5,19> 

‘-lfih 

c [F’ (5) -I- G’ (L)] dc = iclh (b - a) + . 
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Substituting the evaluated integrals into (5.19). we obtain the following relationships : 

2(a+~)(L--~)+c,(b--a)(l--~)+ 
ucl(a+b)K(~/l-@) _~LN 

dn (eo/ ~1, k) II 
(5.21) 

2H(a + p)- c,h(b -a)-"c;$!-;~kI"' = 2HN, 
1 

Using the second formula in (5.18), we find the hole diameter 2~, in the z - 0 sec- 
tion; we obtain 

Y0 = @cl (i + b / a) F (90, 6) 
2dn (eo /a, k) 

cpo = arc sin 
to2 - 1 

to = 
1 

t”2 -- 62 ’ dn (%I/ u, k) 

(5.22) 

The four equations (5.16) (5.17) and (5.21) are to determine four constants. One ofthe 

constants remains a free parameter, as before. 
The approximate solution of the problem considered was attempted by the small para- 

meter method in [9, 111. 

6. Application to the theory of a minimum weight structure. 
Let a structure or some element of it be a plate with holes in the plane state of stress, 

The plate thickness is considered constant. let us assume that some ultimately admis- 

sible normal stress (taking account of a safety factor) determined from an elastic analy- 
sis of the structure is given. Let us note that plastic zones are not usually admitted in 
all structures desined for prolonged operation. For technological reasons the hole shape 

will usually be circular, 
Under the assumptions mentioned, which are realized quite often in practice, the gain 

in weight of a structure obtained by using equally strong rather than standard circular 

holes can be easily estimated. 

A comparison between equally strong and other holes shows that the stress 6t therein 

is minimal compared with the maximum value of ot on any other hole outlines (*). 

In this sense, an equally strong hole possesses the property of greatest strength also (in 

comparison to all other holes). 

The following hence results: a structure with equally strong holes possesses least 

weight in comparison to analogous structures without equally strong holes. Indeed, two 
analogous structures with differently shaped holes from plates of diverse thickness (natu- 

rally from the same material) will be equivalent in the strength sense if the maximal 

stress ut on the hole outline in these structures will be the same. Equally strong holes 
permit application of plates of least thickness for any given ultimately admissible stress. 

We present specific estimates. Let an infinite plate of thickness h, with a load-free 
circular hole be subjected to homogeneous tension, which is described completely by the 

stress resulatants P and pp acting in the principal directions (p is some number, fl < 

1). Let us note the dimensionality of the stress resultant P, i.e. “the force divided by 
the length”. In this case the maximal stress ot on the hole outline evidently is 

,y= = (3 - p) P/h” 

*) This assertion should be considered as an intuitively obvious fact, verified in many 
cases. The author does not know of any rigorous proof. 
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According to (1.10). an analogous quantity in the case of an equal strength hole in a 
plate of thickness &in,’ is 

‘TX = (I + 8) ’ / hmin 

Equating these two quantities for structures of equivalent strength, we obtain 

Therefore, application of an equal-strength in place of a circular hole in this case per- 
mits a g% diminution in the weight of the considered element of the structure, where 

g = 266 (1 - 8) I (3 - B) (6. I) 
without changing the strength. For example, if one principal stress resultant is twice the 

other, i.e. p = lJz, use of the equally strong rather than the circular hole permits a 
40% diminution in the plate weight while conserving the strength. It can be shown that 

g increases as the number of holes increases and boundaries are present. Hence, (6.1) 

can be considered as the lower bound of a possible diminution in the weight of a struc- 

ture. 
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STABILIZATION OF FREE ROTATION OF AN ASYMMETRIC TOP 
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We analyze the motion of an asymmetric top with cavities filled with a viscous 

incompressible liquid, and we study the stabilizing effect of the liquid on the 
rotation of the top around a given axis. The characteristic time for stabilization 

and the best orientation of the cavity relative to the solid body, have been found. 

1. Equation8 of motion and their investigation. In a coordinate sys- 
tem whose axes are directed along the principal inertia axis of a body-liquid system, 
the equations of motion of a top for small Reynolds numbers reduce to the form Cl] 

lo’ + [o, lo] = + {PO.. + [o, ~0’1~ (1.1) 

Here 1 is the system’s inertia tensor, o is the top’s angular velocity, p and Y are the 

liquid’s density and kinematic viscosity, respectively. The right-hand side of (1.1) des- 
cribes the force moment caused by the liquid’s motion relative to the top; terms of a 

higher order of smallness with respect to p / Y are discarded. The tensor P = 1 Pij (1 
is determined only by the shape of the cavity and is symmetric, Pti > 0 . In the case 

of several cavities this tensor equals the sum of the tensors for the individual cavities. 
The computation of the components of this tensor for a given cavity is a separate prob- 

lem. It has been obtained in [l] for cavities of certain shapes. The motion of a solid 
with a symmetric cavity, when the tensor P is a multiple of the unit tensor, was studied 

in [ 11. Here we examine the case of an arbitrary tensor P. 
We rewrite Eq. (1.1) in the form 

M’ + [o, M] = 0, M=lClJ- -+ PO’ 

where M is the system’s total impulse moment. Hence right away we see the two re- 
lations 

MM’=O, M’o=O (1.2) 

i. e. the law of preservation of the impulse moment and the law of dissipation of the 

system’s energy rs _ 2 + (r, PO’) = con& 
(1.3) 

dff dH --- 
df= dt 

; g (0, Pw.) = - -+I*, PO.) < 0 

E = $ (co, lo) - $(a, PO’) 


